Collaborative text-annotation resource for disease-centered relation extraction from biomedical text
نویسندگان
چکیده
Agglomerating results from studies of individual biological components has shown the potential to produce biomedical discovery and the promise of therapeutic development. Such knowledge integration could be tremendously facilitated by automated text mining for relation extraction in the biomedical literature. Relation extraction systems cannot be developed without substantial datasets annotated with ground truth for benchmarking and training. The creation of such datasets is hampered by the absence of a resource for launching a distributed annotation effort, as well as by the lack of a standardized annotation schema. We have developed an annotation schema and an annotation tool which can be widely adopted so that the resulting annotated corpora from a multitude of disease studies could be assembled into a unified benchmark dataset. The contribution of this paper is threefold. First, we provide an overview of available benchmark corpora and derive a simple annotation schema for specific binary relation extraction problems such as protein-protein and gene-disease relation extraction. Second, we present BioNotate: an open source annotation resource for the distributed creation of a large corpus. Third, we present and make available the results of a pilot annotation effort of the autism disease network.
منابع مشابه
Literature mining of protein-residue associations with graph rules learned through distant supervision
BACKGROUND We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from arti...
متن کاملSemantator: Semantic annotator for converting biomedical text to linked data
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-...
متن کاملTowards a terminological resource for biomedical text mining
One of the main challenges in biomedical text mining is the identification of terminology, which is a key factor for accessing and integrating the information stored in literature. Manual creation of biomedical terminologies cannot keep pace with the data that becomes available. Still, many of them have been used in attempts to recognise terms in literature, but their suitability for text minin...
متن کاملEgas – Collaborative Biomedical Annotation as a Service
In this paper we present Egas, a web-based platform for biomedical text mining and collaborative curation. The web tool allows users to annotate texts with concept occurrences as well as with relations between concepts. Annotations may be imported together with the documents using one of the accepted input formats, or may be added during the annotation process, either manually or by calling a d...
متن کاملDeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes De...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical informatics
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2009